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SUMMARY

Two-point, two-time correlation equations are ob-
tained by considering the Navier-Stokes equations
for two points in a turbulent fluid at two different
imes. By meglecting the triple correlations in the
equations, a solution is obtained for the space-time
velocity correlation in the final period of decay
The analysis is extended to earlier times by con-
sidering the Navier-Stokes equations al three points
in the fluid at three different times. The resulting
set of equations is made determinate by neglecting
the quadruple correlations in comparison with the
triple correlations, as in a previous paper by the
author which considered correlations involving only
one time.

The diffusion of particles from a source in a
decaying turbulent field is calculated approximately
by assuming that the velocity fluctuations are small.
The theoretical results are compared with experi-
menls for diffusion from a line source in a decaying
turbulent stream.

INTRODUCTION

Most of the theoretical work on homogeneous
turbulence has been based on correlations between
fluctuating quantities at several points in a fluid
at a single time (e.g., ref. 1). Correlations in-
volving several different times as well as several
points in the fluid are also of considerable interest
and have been studied by several authors (refs.
2 to 8). These studies were concerned mostly
with the kinematics of space-time correlations,
although some aspects of the dynamical problems
were also considered. In conmnection with the
dynamical problem, Bass (ref. 5) set up the space-
time equivalents of the Karman-Howarth equa-
tion (ref. 9), but no solutions were obtained.

This paper is concerned primarily with the
dynamical problem. First, a solution for the final
period is obtained by neglecting the triple corre-
lations in the two-point, two-time equation. A
similar solution was obtained by Batchelor and
Townsend (ref. 3) by use of a method that con-
sidered unaveraged velocities rather than the
two-point, two-time equations considered here.
However, the method used in this report is more
convenient for extension to earlier times. The
extension to earlier decay times, or to higher
Reynolds numbers, is made by retaining the
triple correlations. An expression for these corre-
lations is obtained by neglecting the quadruple
correlations in a three-point, three-time equation.
Solutions for still earlier times could be obtained
by considering the turbulent fluid at a larger
number of points and times. This procedure is
analogous to that used previously by the author
for multipoint correlations at a single time (refs,
10 and 11).

By assuming that the turbulent fluctuations are
sufficiently small for squares and products of the
fluctuations to be negligible, turbulent diffusion
from a source is calculated approximately; it can
be shown that the Lagrangian correclation and the
Eulerian time correlation are essentially equal for
this case. The possibility of replacing the La-
grangian by the time correlation at a point has
been suggested by Burgers (ref. 4). Recently
Baldwin (ref. 12) obtained an experimental indi-
cation that this is a reasonable approximation.

In the next section the space-time correlations
for the final period are considered; a higher order
approximation for earlier times is taken up in later
sections of the paper.
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SYMBOLS

D indicates substantial derivative

K energy spectrum function

Sk arbitrary functions

i v—1

Jy constant that depends on initial con-
ditions

n integer

r.r,r points

P instantaneous pressure

Iy longitudinal space-time correlation
coefficient, defined by eq. (21)

rr distance vectors

7,7 dimensionless time, defined by eq.
(43)

AT dimensionless time increment 7/ —7T

T dimensionless time halfway between
Tand 77

R times

t time halfway between £ and ¢/

t reference time

At At time increments t'—¢ and ¢/ —{,
respectively

WU instantaneous velocity components

v component ol veloeity in y-direction

W given by eq. (38)

G space coordinates

Y distance in y-direction that a fluid
particle originally at y=0 travels
during time interval ¢’ —1,

,2 space coordinates

a,B Fourier transforms defined by eqs.
(273, (28), and (29)

Bo constant that depends on initial con-
ditions

6 angle between & and &’

K,k wave number vectors

dk equals dkdrdxg

A microscale based on space interval

Ae microscale based on time interval

v kinemuatic viscosity

o density ,

¢ Fourier transform defined by eq. (7)
or (8)

Subseripts:

L Lagrangian

1,7,k tensor subscripts that have leucs 1, 2,

or 3 and designate coordinate dnectlons
Superseripts:
r referring to points P’ and P/

TWO-POINT, TWO-TIME CORRELATION AND
SPECTRAL EQUATIONS AND APPLICATION
TO FINAL PERIOD OF DECAY

For obtaining the two-point, two-time correla-
tion equations, first write the Navier-Stokes
equations for the points P and 7 separated by
the distance vector r and the time increment
At

ou, , o(u; uA)__l op o%u;

ot TTon — pont o0 )
ou;  o(u/ uk) _lop’ Q%]

ot’ '+ od oz} p Ou] tv O Oy 2)

where the subseripls can take on the values 1, 2,
3 and a repeated subseript in a term indicates a
summution. The quantities u; and »; are instan-
taneous veloeity components, z; is a space
coordinatle, ¢ is the time, p is the density, v is
the kinematic viscosity, and p is the instantancous
pressure.  Multiplying the first equation by uj,
the second by u,, and taking space averages
result in

duu, ouah, 1 Qp_u,’ 6211 u; 5
ot dz,  p ouy ' Orour, (3)
bu ul  Ouu, uk 1 bm bzu u;
o T odh — p or Togor P

where the fact thal quantities at x; and ¢ are
independent of #; and ¢’ wasused. By introducing
the transformations 9/0x,=—0/0r;, 0/dx;=0/dr,,
(0/0t) == (0/dt)a,— 0/0AL, and 0/0’=03/dAt, which
arc obtained by writing a correlution as a
function of r, #, and Af and differentiating, the
following equations are obtained from (3) and

(4):

UL, +_aa wuu(—r,—Af t—{—Al)——

wuui(r Al t)

ot
12— 12 )
= o pu; 5o, pui{—r,— At t+AH+2» oror,
i (5)
U
SA7 + u i (—r,—At EAt)
__1o . %,
= pui(—r,— At LA Fv oo (6)

Equations (5) and (6) are the space-time equiva-
Ients of the Karman-Howarth equation. They
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were obtained in a slightly different form, for
the case of isotropic turbulence, by Bass (rel. 5).

In order to convert equations (5) and (6) to
specetral form, the following three-dimensional
Fourier transforms are introduced:

uiu;(r,Ai,t)zf ok, AL ) el Tdx (7)

u_,?lﬂl:(r,df,f)ZJ' @jki<K,At)t)elk : 'dx (8)

)

puratn=| \(xAtbe*  Tdi )

— o
where xis a wave number vector and dx=dx,dxdky.
By introducing these transforms, equations (5)
and (6) become

a ij . .

gtj“F'lKk‘ijt(-";_‘M:fJFA{)—?KML‘A»J'(K,At,t)
=%7'Ki)\j—i ikh(— &, — AT A1) — 200y (10)

dgi; . -

SE it (— 1 — ALEHAD

=-—-% kA (—x,— At AL —vilpis (11

In order to convert the tensor equations (10) and
(11) to sealar equations, contract the indices 1
and j:

O¢is ;
—g—t+2VK2¢ii:’lKkﬁDiki(K)At:f)

(= k) oui(—r,— AL tHAL)  (12)

a ii .
ﬁﬂ«”s&n:t(—xk)som.-(fx,—m,tqtm) (13)

The pressure terms drop out of these scalar equa-
tions because of the coutinuity relation Ou;f0r;=
O, pr;=0 and the relation Q/dr;=—0/0r; (sce
eqs. (3) and (4)).

FINAL PERIOD

Equations (12) and (13), as they stand, contain
too many unknowns for solutions to be obtained.
For the final period of decay, however, the triple
corrclation or inertia terms should be negligible
compared with the double correlation terms.
Thus, the terms on the right sides of equations
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(12) and (13) are neglected, and the following
solutions are obtained:

¢ii:f1(x,At)é_2"“2(’—’o) 14)
pu=S2(x,t)e=7At (15)

In order for these equations to be consistent,
E:f(h) p—vx2Atg—2en® (t—ty) (16)

where the energy spectrum funetion E=2npy
has been introduced. Evaluate f(x) by letting
F=dJu'/3x when « is small (Lin, ref. 13). This
gives

E:—MQ_QVA!(I_tO+% L\f) (17)

3

where Jp is a constant that depends on initial
conditions. For at=0, equation (17) reduces to
the usual expression for the energy spectrum
function in the final period, which involves only
one time. By integraling equation (17) with
respect to «, the time correlation is obtained as

—

u;  Jy 52 1, o '
7 320en" (t ’°+2At> s

and, for isotropic turbulence, the longitudinal
space-time correlation is

_ J, o 1 —5/2
ll;lll(T,Af,t):WmV <I‘—l‘\)+§.’_\f>

7.2

ool "7 1N«
erp 8u<t—t0+%A{> (19)

Equations (18) and (19) again reduce to the usual
expressions involving only one time if Af=0
(c.g., ref. 1, p. 84).

If & new time t,, which lies halfway between ¢
and ¢ (in=t-+At2) is defined, then At does not
appear explicitly in equations (17), (18), and (19),
and wu, is a function only of tn and r. For
instance, the longitudinal space-time correlation
becomes

&2 (( m fU) e

— J _
u1TL1(T,fm) =KC_#)”—2 v
7‘2
_ 20
()fp [ Sy(fm_ tﬂ>] ( )
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However, the correlation coefficient is not inde-
pendent of At.  The longitudinal space-time cor-
relation coefficient 2, is defined as

iy (r,t )

) (-

and, for the final period, becomes

Bu(ratt,)= [l T4 (i —to) ]
1 r ’
2T ol 5, 0= 22
€ P{ 2[{41}(1',,,—%)] } 2

Batchelor and Townsend (ref. 3) previously ob-
tained this equation but by a different method,
which considered unaveraged velocities. A dimen -
sionless plot of R, is presented in figure 1. The
values of Iy, decrease as time interval Af increases,
This is similar to the variation of correlation
cocfficient with distance and would be expected
physically.  The curves go to zero at a finite value
of Al(At/2=t,—1,) whereas, as r increases, they
go to zero only at r=ow. The point where the
value of Ry, is zero corresponds to the point where
onc of the velocity fluctuations becomes infinite.

1 1/2
a’z‘“)J

These curves for the final period would not, of
course, be expected to be accurate in the vicinity
of that point. The singular behavior could be
avoided, for positive values of Af, by evaluating
the correlation coeflicient at ¢ rather than at tm,
as in equation (19). However, this coefficient
would not be symmetric with respect to At.

A microscale A,, which is based on time interval,
can be defined by analogy with the usual miero-

scale A, which is based on space interval. Thus,
A, might be defined as
1_1 '221".1_')
N2\ 0Ae
- 11— . .
where u?=-u,u; for 1sotropic turbulence. The

3
ratio of A2 to A?is then

51)2~'zﬁ(aﬁﬁll/az-2)o
N/ T (OMR11/0ALY),

For the final period this becomes

>\ _ o (ta—te) ™32
T 120(2m) 272

Thus, A/A in the final period is a function of decay
time as well as of J; and ». Calculation of A/

1.0

1.0

A7
tm=to

FicrRE 1.—Variation of longitudinal space-time double-velocity correlation coefficient in final period (eq. (21)) with

space and time intervals.

Correlation coefficient evaluated at {,=f-+ Atf2.



MULTIPOINT-MULTITIME CORRELATIONS AND DIFFUSION IN HOMOGENEOTUS TURBULENCE 5

from this equation and the experimental data of
Batchelor and Townsend in the final period (ref. 3)
indicated values of that ratio on the order of unity.

THREE-POINT, THREE-TIME CORRELATION AND
SPECTRAL EQUATIONS

To obtain the three-point, three-time correlation
equations, write the Navier-Stokes equation at the
points P, P/, and P’ separated by the distance
vectors r and r’ and the time increments At and
A¥. The vector configuration is shown in figure 2.

P“' X“v P

Pt

Figure 2.—Vector configuration for deriving threc-point,
three-time correlation equations,

The first two equations are the same as equations
(1) and (2) with the subscripts k replaced by !
The third equation is

1 bp ouy

auk " ll N)__ ,,+V a a - (23)

II +b.T”

By multiplying the first equation by wjuy, the
second by uay, the third by uu; and by taking
space averages, the following correlation equations
can be constructed:

o wuL Uy — o wuluy u wuiuyu
bt k a kW a’n kw1
-2 waluy u s 0 wauy uy
a k W a 7 k Wy
= (— 2 Pl R
+a ,7) U; uk +a p u Uy )
Otuuluy | Quujuy | 0%y u’u;’)
+ 2 D/lbr; + br,bl; + arlarl (24)

b ’ rr 1 117
mu‘u u"+b U, Uy Wy
10 5—= O uiuy
== Pl +v ——a or, (25)
a I r: 7 rr rr
aAt,uuuk—{—a,uuukuz
19p" uu , O uu'uk’

——; a]k Tﬂ o7, la 'y (26)

where the following transformations were used:

0 0 90 o 0 0 0

—_———— ) =5 =7
o, dr, or, dx; or, oz 0n

(R) _<_°_> _9_ o
ot )y i \Otarar OAt OAL”

®_0° o _ 9o
dt’ oAt’ ot dAt

Equations (24), (25), and (26) are the three-point,
three-time correlation equations. In order fo
convert these equations to spectral form, the
following six-dimensional Fourier transforms can

be defined:

uuy, (rAt, AT

=f f Binr,At " AL 8)e!® - rHE - T dnd i’
(27)

uauiuy (r,Atr’ At t)
ﬁu;a(x Atk AL et ¥ e T dkd i’

-J..
(28)

pu'u,’,’——f J‘ agel® THe I dkde’  (29)
AISO,

waluguy, (r,ALr" At

—wuuiug (—r,—At,r —rAt’—At,t+Af)

=f_ Buz‘k(‘""—"

t+At)el® et dedi’

1 — Atk AL —At,

(30)
and

Fo 17

waiug ) (AL AL

=uau iy (—r,—At", r—r’ At—At t+HAY)
zf !3kzij(_K—K',—At’,K,At—At',

t-HAt et I ded’ (31)
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Similar expressions can be obtained for pressure
correlations,

Substituting the preceding relations into equa-
tions (24), (25), and (26) gives, for the three-
point, three-time spectral equations:

a o 7 4 79 . ’
df Bimt2v(t+x,k + "B B = 1(k; &) Birje

— ik Bl —r—K',— At K A — ALt +AL)

— K B (—k— K ,— Ak, Al— At AL

1 . , .

— [— ik +aD)ap+ ieu(—x—x&’,— ALK/,

At' — At AR ko (—k— k', —AF k,
Al—AL t+At)] (32)

d .

A7 Bintvi®Bip=—1kBuu(—x—k’,—At x’,
Az"—Ai,t+A1)-—% tap(—r—K’,
— A A — AL AL (33)

OB
OAt’

+VK’QBUL-:—iK{ﬁ“ij(—K_K’,—Af,, K,

Af~Af’,t+At')-—-;I)iKLaU(—x—x',—At',x,

At—AY t+AL)  (34)
SOLUTION FOR TIMES BEFORE FINAL PERIOD

For the final period of decay, a solution was
obtained by negleeting the triple correlations in
the two-point, two-time equations. Similarly, a
solution applicable 1o times before the final period
could be obtained by retaining the triple correla-
tions and negleeting the quadruple correlations in
the three-point, three-time ecquations. A fuller
discussion of this procedure is given in references
10 and 11. In reference 10 it is shown that, if
terms corresponding to quadruple correlations are
neglected, the terms corresponding to pressure
correlations must also be neglected. Thus, if all
the terms on the right sides of equations (32), (33),
and (34) are neglected, the equations can be
integrated between £ and ¢ to give

ﬁz‘jk:‘fi]},;(K,K,,At,Atl) erp [—QV(I\’2+ K[K{+K’2)(t_10)]
Biﬂc:gijk(":“’:t;At,) erp (_VKzAf)

6”};:huk(l{,l€,,1,.ﬂt) exp (—VK’QAt ,)

In order for these equations to be consistent,
1
su=rlpuation o s —2r [ (1—totat)

ok (= 1) cos 8-k (t—t.,—{-%At')]} (35)

where the indices 7 and j have been contracted
and the equation has been inner-multiplied by &
in order to convert it to scalur form. The sub-
seript 0 refers to the values of 8, at f=#,,At==At
=0; and @ is the angle between k and &,

In order to conneel B.q and ¢y, lot P=A =0
in equation (27) and compare with (8) to obtain

s, AL F) = f Bual AL 0,0)dx’  (36)

Substitution of equations (35) and (36) into (12)
results in

%f+2mE:W (37)
where
E=2r%p,,
and

W [ in(Buelzn? et exp{— sttt —t,

0
-ttt} - [ [ erp (20 6= 1)
cos 6]d(cos 0)](1::’-}—]w[‘i(——Kk)ﬁm("‘K:

—wobemrecten{ =2 [e(t-u+g

+K'2(t—t(,—}—m’)]}- [f_llerp [—2ukk’ (1 —1,

+A4t)]d{cos 0)] de’ (38)

where dx’ is writlen as —2m«"?d(cos 8)d«’. The
quantities (8:.) depend on the initinl conditions
of the turbulence. TIn order that these results
will reduce to previous results for Af=0 (ref. 10),
let

(2m)? el o=k S —aT'Y)  (30)
Then,

(2”)2 ?‘(—Kk)Biik(_K;_K,)U:_%BU("AK’G— KGKM) (40)
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Substituting equations (39) and (40) into (38) and
carrying out the integrations with respect to # and

" result In
(=/2)"2 B, 2< 2
556 9 exp k2t t”+3 .\t)
105" 45k
[ Qm(t [ )0/2+ /2(t t )7/2
_ 19«10 k12
V5/2(t_t0)5/2 V3/2(t——t0)3/2

_ (m2)'2 By p[~_ '2<t—to+;’At):|

256 2
[ 105« + 45k
At — Lot ADYE Ty 2t to L AT
19«10 o 3xi? ] (41)
Pl —tg L ALY Pty T AL

Equation (41) reduces to the expression for the
energy-transfer function involving only one time

(ref. 10) if At=0. Note that J Wdk=0 only

0
for At=0.
Substituting equation (41) in (37) and inte-
grating with respecet to ¢ result in

=—~ erp [—"m\ (t—to—i—z At):l

1/2 BO

3 afi_ 42,
—_56 ~e p[ 5 VK (t to—l—BAt):]

W=

©

i 5\*?1{6 1 2\“§K8
TR — 1)t Wt —1)%?
7\f§K10 ].Gy‘?l(lz

+3V3/2(t__t0)3/2 31,1/2(t_ to)”2

_32:(‘3 F( V(t_to)m):l
3 K79
112 ﬂl)
~ 556, 2 erp |:——Kv<t—t0+ A{)]

_ 1{)\ 2k _ 12\‘(2K
T —t, FAT Rl — b+ AL
72«10 16y2«!2

+3u3’2(t—l’ TAL? 3t —t, A2

32@3 P ( [y(z—t0+At)]m)] (42)

580361-—61———2

where

F(w):e—w“f” ede
) 0

W= [u(t—fu)] /2 I:u(t—t§+A{)]1f2

Tor evaluating the function of integration (with
respect to time) in equation (42), the theory of
Lin (ref. 13) or of Batchelor (ref. 1) is used.
According to those theories the coefficient of the
first term in the expansion of F£ in powers of « is
independent of time, whereas the other terms may
not be.  Thus, the function of integration, since
it cannot be a function of time, is set equal to the
first term of the expansion, which is Jek*/37.  The
{heories of Lin and Batchelor are based on the
assumption that correlations are exponentially
small for large values of r. This Is consistent
with the results of the present theory (refs. 10
and 11) and does not secem to be inconsistent with
some results of Batchelor and Proudman (ref. 14),
if the effects of the singularities arising in their
analysis are assumed to be negligible.  According
to Batchelor and Proudman, correlations, in
general, would be expected to be negative power
functions of r for large values of r, and all terms in
the expansion of £ would, in general, be functions
of time. their results by no means
rule out the possibility of exponentially small
correlations or of a constant first term in the ex-
pansion of F. The present theory gives ex-
ponentially small correlations for large r (refs. 10
and 11) and is consistent with a constant first
term in the expansion of 7 for evaluating the
function of integration in equation (42).
By using the relation

However,

1mt§(At,t)=f°° de
2 0

and introduecing the dimensionless time

L AL
pr it (43)
0
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the dimensionless time correlation becomes where 0!=1. For AT=0, this becomes
By wui(AH 1 ( 1 )’5/2 . 59 T -5
AN _ 1 LN T &0 mmt)_ T e
SO0 2 32(2m) 12 +2 512 Jéu% S 9 =32(27r) 7102206777 (45)

) . ~ : whiel is the same as the expression for the turbu-

__M Gy 25/(3+3) - lent energy obtained previously (ref. 10). As in

7’7/2<T—}—%A’1'> ! (T+AT) (T—I—%AT) . the case of the final period, an average time ¢, =t

‘ . +At/2 can be introduced. Equation (44) becomes,

when written in terms of the dimensionless T,
rather than T,

140/(94/3) 140/(9+'3)
- 5 N o
T (T+g AT) (T-+ ATy (T+3- aT)

(51/9 utug(At}{m): 1 T75"12
245/ (2743) 245/(27+3) Jot 2 82(2m) "
+ 2 11/2—‘_ . 1 1172
TS/Z(T+7AT> (T+AT)3’2(T+§AT> -
3 ' T 25/(3+3)
6160/ (s1+/3) 6160/ (51+/3) 512 T tarY (7,1 lar)"”
+ 5Y Erel ‘ 1 132 o2 ]
T”2<T+§A’1‘) (T+AT)"’?<T+§AT)
3 i 2n—1) (n—1)! 28n+13 - 1 772 1 e (46)
(’l‘,,,—}—éAT) <Tm—6AT)
2n -1 an-1
7 ° T+AT) ° . . — :
T+ (T+AT) T (44) This expression for uu; does not become independ-
1., @2 1 T ent of AT when written in terms of 7,, as was
(T+§A1> <f+2AT> the case for the final period. However, the

N

-— — — Final period

Including higher order contributions |
before final period

SN L

Ry (A1 1)

NG TN

~N
\ .
N TN
0 2 4 [ 8 10 12 14 16 18 20
AT

Ficure 3.—Variation of time double-vclocity correlation coefficient (eq. (47)) with dimensionless time interval and
decay time, and comparison with values for final period. T defined by equation (43); correlation coefficient evaluated
at Tp=T+AaT/2.
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expression is still symmetric with respect to AT.
This is in agreement with the results of Meecham
(ref. 7), who came to that conclusion by kinemat-
ical considerations.

__A more physically meaningful quantity than

u, is the time correlation coefficient, defined as
follows:

wuz (AL )

1/2
I:u,ui (t,”—}-; At) L, <t,,,—% At):l
47

A plot of R, obtained from equations (45),
(46), and (47), is shown in figure 3. The final-

R,=

9

for comparison. As in the case of the final period,
the values of R;; decrease with dimensionless time
separation. That is, of course, the type of be-
havior that would be expected on physical grounds;
the time correlation coefficient can be considered
as a measure of the sameness of the velocities at
different times at a point in much the same way
that the space correlation coefficient provides a
similar measure for velocities at different points at
one time. It is of interest that the values of w.u}
by themselves do not exhibit this behavior; in
fact, they increase rather than decrease with time
separation, as shown in figure 4. This unusual
variation is apparently due to the nonlinear decay
of the turbulence with time and would not be

period contributions are shown as dashed curves observed for stationary turbulence. For the
3.8 W )
Tm
3.4 - — e N — e e — R
2.2
4.0
3.0t - - -
&
=
1NN 2.6 4 ]
I
3 A
/\
w|o .r>1c=§ 22— 17— -
o| gl
<
~— -
1.8
lal—1— - 4
I R, Tm
m_
N
o _'_______,,_./ N
0 4 ) 6 7 8
AT
FigURE 4.—Variations of dimensionless double-velocity correlation with time interval and deecay time. Correlation

evaluated at Tm.
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decaying case, it appears that the correlation
coefficient, as defined by cquation (47), is much
more meaningful than wu; by itself. The dis-
cussion of the time microscale given in connection
with the final period would, of course, have been
meaningless if it had been based on wau; rather
than on the correlation coefficient.

Comparison of the dashed with the solid curves
in figure 3 indicates that the general effect of the
higher order inertia terms in the correlation
equations is to decrease the correlution coefficient
at a given value of time separation. This is
opposite to the corresponding cffect for space
correlation (sece, for instance, the cxperimental
results of Stewart and Townsend (ref. 15) or the
theoretical results of Deissler (ref. 11)). 1t is
possible that the reduction of correlation coeflicient
by inertia terms is caused by the nonhomogeneity
of the turbulence with time.

APPROXIMATE CALCULATION OF TURBULENT
DIFFUSION FROM A SOURCE FOR SMALL
VELOCITY FLUCTUATIONS

The time correlations considered in the pre-
ceding sections were concerned with velocities at
different times at a fixed point m the fluid
(Eulerian correlations). On the other hand,
caleulating the turbulent diffusion of particles
from a source usually involves the Lagrangian
correlations, which are based on the velocity of a
moving fluid particle at different times, rather
than on the velocity at a point. For small
velocity fluctuations, however, it has been sug-
gested by Burgers (ref. 4) that the two correlations
should not differ greatly. This can be shown as
follows:

First, consider the Eulerian time correlation
p(e(t’), where v is the component of the velocity
in the y-direction; similar results could be obtained
for the other velocity components. The Eulerian
correlation can be expanded in & serics as

l?(t)v(t’)::[L'(t)l.‘(t')],:=,+[% v(t)‘v(t'):l z'=l(t'%t)
5| @) | (@
=‘zﬁt‘>+v<t>[9§§3 W=

(t)l:bzv(t ) -

Y P

—)- ...

—t)2F ... (48)
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Similarly, the Lagrangian correlation is expanded
as

[(®)v(t")]=2() + o(t) DZD)(:/’) ) (t’'—t)
D(t’ ) .
o) | Zyrs ) ... (49)

The substantial or particle derivative can he
written as

Do(t’) az(t’)
Dt o

Dz (), oe(t) () -
o0 17 oy TS, (50)

For small velocity fluctuations,

Doty _owe(t’)

D = o (1)
Also
Daw(t') o De(t’) o%(t’) (52
Di® =ot Dt~ ol 52)
and so on for higher order derivatives. From
equations (48), (49), (51), and (52)
v(t)e(t’) =[o(O)o(t’)]e (53)

is obtained, which was the relation to be proved.
It should be noted that relation (53) is most
accurate for small values of ¢’ —¢ as well as for
small velocity fluctuations, inasmuch as the approx-
imate relation (51) had to be applied a greater
number of times to the higher order derivatives
in equation (49) than to the lower order ones (sec
eq. (52)).

Tt should also be emphasized that equation (53)
was obtained for the case of no mean motion.
Thus, Eulerian time correlations measured with
a stationary instrument in a moving stream will
probably differ considerably from the Lagrangian
correlations. However, if the instrument is mov-
ing with the stream, the two correlations will he
approximately equal if the turbulence level is not
too high (see ref. 12).

Next, the equation for the turbulent diffusion
of particles originally concentrated at a source is
considered. The theory of turbulent diffusion was
originated by G. I. Taylor in 1922 (ref. 16) and has
since been studied by a number of authors (e.g.,
refs, 17 and 18). The distance in the y-direction
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that a fluid particle originally at y=0 travels
during the time interval ¢’ —¢, is

Y(t’)=ft“ o(t)dt (54)

Multiplication of this equation by #(¥) gives

’- . 1dY?
(1) (t )=§‘717

1
=f e(t)e(t’)dt (55)
LY
Taking the particle average over all the “marked”
particles that were originally concentrated at a
source at ¥y=0 and inlegrating with respect to ¢
result in

Yi=2 f f [e(H)e(t)] dede’ (56)

Equation (56) gives the mean square of the dis-
tance that the marked fluid particles concentrated
at y=0 at time t, have traveled by time . Tt
is evidently applicable to decaying as well as to
stationary turbulence. Note that the double
integral in equation (56) cannot be converted to
a single integral as in the case of stationary
turbulence.

If the approximate relation (53) is introduced
and it is noted that, for isotropic turbulence,
oD ey =[u (), (t")]/3, then equation (56) can be
written in dimensionless form for isotropic turbu-
lence as

61/Q 17/9 = T
P f f
where the dimensionless time 7' is defined by
equation (43) and the time correlation is obtained
from equation (18) or (44) by remembering that

At=t'—tor AT=T"—

FINAL PERIOD

/Q t t , N
},(ﬁ)?;,g( Darar (1)

For diffusion in the final period of decay, equa-
tion (57) can be integrated to give

L7/ T_z——l— 1 I:*'—l—'_ s
“gen VeTam Y vz LnFary T

=i

3]

v

—1 N (58)
<T1—|—§ An)

where 77 is again the dimensionless time at which
diffusiou begins and AT} is the dimensionless time
during which diffusion takes place (T,—7T)). For
large difTusion times,

BI/Q 1779

10/9
Jy

2 1 ~
) 2T 9 \QZFTI‘IZ (og)

That is, the turbulent diffusion distance reaches a
constant value and becomes independent of AT,
for large diffusion times. This differs from the
case of stutionary turbulence, where T3 increases
lincarly with AT, for large diffusion times. The
reason it reaches a constant value for decaying
turbulence is that for large times the turbulenee
gocs to zero, so that no more turbulent diffusion
can take place.

Figure 5 shows dimensionless root-mean-square
diffusion distance for the final period plotted
against diffusion time for various values of T, the
time at which diffusion begins. The curves have
considerable carvature at early times but approach
a linear form for large values of 7h. For carly
times, the diffusion distances are much larger than
those for later times because of the higher turbu-
lence Jevel at early times.

TIMES BEFORE FINAL PERIOD

It might be argued that, strictly speaking, the
approximate relation (53) should be used only in
the final period, inasmuch as inertia terms were
neglected in obtaining it.  Inasmuch as no experi-
mental diffusion data exist for the final period,
however, some sort of approximation must be
made for earlier times in order to compare the
theory with experiment. The results might still
be applicable for small times of diffusion; experi-
mental data of Baldwin (ref. 12) for diffusion in a
fully developed pipe flow indicated that equation
(53 applies reasonably well for that case, although
the turbulenee probably did not correspond to that
in a final period of decay.

TFor times carlier than those corrmpomlmg to
the final period, equation (44) is used in (57) with
AT roplaced by T7—T. Tn this case the integra-
tion was carried oul numerically on high-speed
computing machinery. The resulting plot 1s
shown in figure 6, where the final-period contribu-
tions are shown as dashed curves for comparison.
The higher order inertia terms have a noticeable
effect on the diffusion at early tines; at later
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Fioure 5.—Predicted root-mean-squarc turbulent diffusion distances for final period as a function of dimension-
less diffusion time and decay time.

times the effect of those terms becomes negligible,
and the solid curves approach those for the final
period.

These curves should apply to the calculation of
the width of the diffusion wake from a line source
in a moving stream. In this case Af would be
replaced by the distance downstream from the
source divided by the velocity of the mean stream.
Comparison of the curves in figures 5 and 6 with
those obtained experimentally (e.g., ref. 19) does,
in fact, indicate a marked similarity. In order to
obtain a more quantitative comparison, the
constants oJy, B, and #, which depend on initial
conditions, were evaluated from the decay data of
Uberoi and Corrsin and equation (45). Equation
(45) was found to represent the decay data closely
when  Jp=1.05X10"% ft7/sec?, B,=1.8110~%
ft'¥/sec?, and #,=—0.407 secc. With these values
for the constants, diffusion data for an early and
a late time are plotted in figure 7. Tncluded for
comparison are analytical results for the same

values of 7). The agreement between theory and
experiment seems to be good for large values of T,
and small values of AT,, whereas some deviation
is indicated for other conditions. This might have
been expected from the nature of the approxima-
tions made in obtaining equation (53), which was
used in the analysis. As discussed previously,
that relation is most accurate for small velocity
fluetuations (farge 77) and for small diffusion
times.

CONCLUSIONS

The time correlation coefficient in a decaying
homogeneous turbulent field, when cvaluated at
a time halfway between the times at which the
two veloeities are considered, deercased with time
interval in much the same way that space correla-
tion coeflicients decrease with space interval. The
time correlations by themselves, on the other hand,
were independent of time separation in the final
period and increased with time separation at
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carlier times, although they were symmetric
with respeet to Af. The correlation coefficient
(cq. (47)) appears to be a much more physically
meaningful quantity than the correlation for a
decaying turbulent ficld. The effect of the higher
order inertin terms in the correlation equations
for times before the final period was to reduce the
value of the correlation coefficient at a given time
interval below that for the final period. The
ratio of time microscale to space microscale in the
final period was a function of decay time and of
initial conditions.

By assuming thut the velocity fluctuations are
sufliciently small for squares and products of
velocities to be negligible, it can be shown that
the Eulerian time correlation is approximately

cqual to the Lagrangian correlation. Turbulent
root-mean-square diffusion distances were caleu-
lated by using this approximation and the equa-
tions for the time correlation obtained herein.
The agreement between theory and experiment
was good for large decay times (low turbulence
levels) and for small diffusion times; for other
conditions, some deviation was indicated. This
was apparently due to the assumption of the
equality of Eulerian and Lagrangian correlations,
that assumption being most accurate for small
veloeity fluetuations and short diffusion times.

Lewis Rusearca CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CLEvELAND, Quro, November 16, 1960
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turbulent stream.
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